Nuprl Lemma : hdf-union_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].
  (X + Y ∈ hdataflow(A;B + C)) supposing (valueall-type(B) and valueall-type(C))
Proof
Definitions occuring in Statement : 
hdf-union: X + Y
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
hdf-union: X + Y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].
    (X  +  Y  \mmember{}  hdataflow(A;B  +  C))  supposing  (valueall-type(B)  and  valueall-type(C))
Date html generated:
2016_05_16-AM-10_42_07
Last ObjectModification:
2015_12_28-PM-07_43_54
Theory : halting!dataflow
Home
Index