Nuprl Lemma : hdf-union_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].
  (X Y ∈ hdataflow(A;B C)) supposing (valueall-type(B) and valueall-type(C))


Proof




Definitions occuring in Statement :  hdf-union: Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T hdf-union: Y so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].
    (X  +  Y  \mmember{}  hdataflow(A;B  +  C))  supposing  (valueall-type(B)  and  valueall-type(C))



Date html generated: 2016_05_16-AM-10_42_07
Last ObjectModification: 2015_12_28-PM-07_43_54

Theory : halting!dataflow


Home Index