Nuprl Lemma : hdf-until-ap-snd

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[a:A].  ((snd(hdf-until(X;Y)(a))) (snd(X(a))) ∈ bag(B))


Proof




Definitions occuring in Statement :  hdf-until: hdf-until(X;Y) hdf-ap: X(a) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] pi2: snd(t) universe: Type equal: t ∈ T bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) pi2: snd(t) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[a:A].
    ((snd(hdf-until(X;Y)(a)))  =  (snd(X(a))))



Date html generated: 2016_05_16-AM-10_41_12
Last ObjectModification: 2016_01_17-AM-11_11_46

Theory : halting!dataflow


Home Index