Step
*
1
2
of Lemma
hdf-until-halt-right
1. A : Type
2. B : Type
3. u : A
4. v : A List
5. ∀X:hdataflow(A;B). hdf-halted(hdf-until(X;hdf-halt())*(v)) = hdf-halted(X*(v))
6. X : hdataflow(A;B)@i
⊢ hdf-halted(fst(hdf-until(X;hdf-halt())(u))*(v)) = hdf-halted(fst(X(u))*(v))
BY
{ ((InstLemma `hdf-until-ap` [⌜A⌝;⌜B⌝;⌜Top⌝;⌜X⌝;⌜hdf-halt()⌝;⌜u⌝]⋅ THENA Auto)
THEN HypSubst (-1) 0
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
1. A : Type
2. B : Type
3. u : A
4. v : A List
5. \mforall{}X:hdataflow(A;B). hdf-halted(hdf-until(X;hdf-halt())*(v)) = hdf-halted(X*(v))
6. X : hdataflow(A;B)@i
\mvdash{} hdf-halted(fst(hdf-until(X;hdf-halt())(u))*(v)) = hdf-halted(fst(X(u))*(v))
By
Latex:
((InstLemma `hdf-until-ap` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}Top\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}hdf-halt()\mkleeneclose{};\mkleeneopen{}u\mkleeneclose{}]\mcdot{} THENA Auto)
THEN HypSubst (-1) 0
THEN Reduce 0
THEN Auto)
Home
Index