Nuprl Lemma : iterate-hdataflow_wf

[A,B:Type]. ∀[P:hdataflow(A;B)]. ∀[inputs:A List].  (P*(inputs) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  iterate-hdataflow: P*(inputs) hdataflow: hdataflow(A;B) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iterate-hdataflow: P*(inputs) so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top so_apply: x[s1;s2]

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:hdataflow(A;B)].  \mforall{}[inputs:A  List].    (P*(inputs)  \mmember{}  hdataflow(A;B))



Date html generated: 2016_05_16-AM-10_38_28
Last ObjectModification: 2015_12_28-PM-07_44_48

Theory : halting!dataflow


Home Index