Nuprl Lemma : iterate-hdf-append

[L1:Top List]. ∀[F,L2:Top].  (F*(L1 L2) F*(L1)*(L2))


Proof




Definitions occuring in Statement :  iterate-hdataflow: P*(inputs) append: as bs list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)

Latex:
\mforall{}[L1:Top  List].  \mforall{}[F,L2:Top].    (F*(L1  @  L2)  \msim{}  F*(L1)*(L2))



Date html generated: 2016_05_16-AM-10_38_37
Last ObjectModification: 2016_01_17-AM-11_12_59

Theory : halting!dataflow


Home Index