Nuprl Lemma : mk-hdf_wf

[A,B,S:Type]. ∀[s0:S]. ∀[H:S ⟶ 𝔹]. ∀[G:S ⟶ A ⟶ (S × bag(B))].  (mk-hdf(s,m.G[s;m];s.H[s];s0) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdataflow: hdataflow(A;B) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdataflow: hdataflow(A;B) corec: corec(T.F[T]) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b hdf-halt: hdf-halt() nequal: a ≠ b ∈  hdf-run: hdf-run(P) so_apply: x[s1;s2]

Latex:
\mforall{}[A,B,S:Type].  \mforall{}[s0:S].  \mforall{}[H:S  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[G:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  bag(B))].
    (mk-hdf(s,m.G[s;m];s.H[s];s0)  \mmember{}  hdataflow(A;B))



Date html generated: 2016_05_16-AM-10_38_55
Last ObjectModification: 2016_01_17-AM-11_12_50

Theory : halting!dataflow


Home Index