Nuprl Lemma : rec-bind-nxt_wf
∀[A,B,C:Type]. ∀[X:C ⟶ hdataflow(A;B)]. ∀[Y:C ⟶ hdataflow(A;C)]. ∀[p:bag(hdataflow(A;B)) × bag(hdataflow(A;C))].
∀[a:A].
  (rec-bind-nxt(X;Y;p;a) ∈ bag(hdataflow(A;B)) × bag(hdataflow(A;C)) × bag(B)) supposing 
     (valueall-type(B) and 
     valueall-type(C))
Proof
Definitions occuring in Statement : 
rec-bind-nxt: rec-bind-nxt(X;Y;p;a)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rec-bind-nxt: rec-bind-nxt(X;Y;p;a)
, 
let: let, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
callbyvalueall: callbyvalueall, 
squash: ↓T
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
pi2: snd(t)
, 
hdf-running: hdf-running(P)
, 
pi1: fst(t)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:C  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[p:bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))].  \mforall{}[a:A].
    (rec-bind-nxt(X;Y;p;a)  \mmember{}  bag(hdataflow(A;B))  \mtimes{}  bag(hdataflow(A;C))  \mtimes{}  bag(B))  supposing 
          (valueall-type(B)  and 
          valueall-type(C))
Date html generated:
2016_05_16-AM-10_44_33
Last ObjectModification:
2016_01_17-AM-11_12_28
Theory : halting!dataflow
Home
Index