Nuprl Lemma : simple-bind-nxt_wf
∀[A,B,C:Type]. ∀[Y:B ⟶ hdataflow(A;C)]. ∀[p:hdataflow(A;B) × bag(hdataflow(A;C))]. ∀[a:A].
  simple-bind-nxt(Y; p; a) ∈ hdataflow(A;B) × bag(hdataflow(A;C)) × bag(C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
simple-bind-nxt: simple-bind-nxt(Y; p; a)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
simple-bind-nxt: simple-bind-nxt(Y; p; a)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
pi1: fst(t)
, 
pi2: snd(t)
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[p:hdataflow(A;B)  \mtimes{}  bag(hdataflow(A;C))].  \mforall{}[a:A].
    simple-bind-nxt(Y;  p;  a)  \mmember{}  hdataflow(A;B)  \mtimes{}  bag(hdataflow(A;C))  \mtimes{}  bag(C) 
    supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_42_44
Last ObjectModification:
2016_01_17-AM-11_11_37
Theory : halting!dataflow
Home
Index