Nuprl Lemma : base-class-program-wf-hdf
∀[f:Name ⟶ Type]. ∀[hdr:Name]. ∀[T:Type].
base-class-program(hdr) ∈ Id ⟶ hdataflow(Message(f);T) supposing hdr encodes T
Proof
Definitions occuring in Statement :
base-class-program: base-class-program(hdr)
,
encodes-msg-type: hdr encodes T
,
Message: Message(f)
,
hdataflow: hdataflow(A;B)
,
Id: Id
,
name: Name
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
base-class-program: base-class-program(hdr)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}[f:Name {}\mrightarrow{} Type]. \mforall{}[hdr:Name]. \mforall{}[T:Type].
base-class-program(hdr) \mmember{} Id {}\mrightarrow{} hdataflow(Message(f);T) supposing hdr encodes T
Date html generated:
2016_05_17-AM-09_08_01
Last ObjectModification:
2015_12_29-PM-03_35_48
Theory : local!classes
Home
Index