Nuprl Lemma : base-process-class-program_wf1
∀[f:Name ⟶ Type]. ∀[Info,T:Type]. ∀[X:EClass(T)]. ∀[loc:Id]. ∀[hdr:Name].
  ∀[P:LocalClass(X)]. (base-process-class-program(P;loc;hdr) ∈ Id ⟶ hdataflow(Message(f);T)) 
  supposing hdr encodes Id × Info
Proof
Definitions occuring in Statement : 
base-process-class-program: base-process-class-program(X;loc;hdr), 
encodes-msg-type: hdr encodes T, 
Message: Message(f), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
hdataflow: hdataflow(A;B), 
Id: Id, 
name: Name, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
base-process-class-program: base-process-class-program(X;loc;hdr), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
encodes-msg-type: hdr encodes T, 
guard: {T}, 
all: ∀x:A. B[x], 
top: Top, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
msg-type: msg-type(msg;f), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[loc:Id].  \mforall{}[hdr:Name].
    \mforall{}[P:LocalClass(X)].  (base-process-class-program(P;loc;hdr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Message(f);T)) 
    supposing  hdr  encodes  Id  \mtimes{}  Info
Date html generated:
2016_05_17-AM-09_08_15
Last ObjectModification:
2015_12_29-PM-03_36_01
Theory : local!classes
Home
Index