Nuprl Lemma : base-process-class-program_wf1
∀[f:Name ⟶ Type]. ∀[Info,T:Type]. ∀[X:EClass(T)]. ∀[loc:Id]. ∀[hdr:Name].
  ∀[P:LocalClass(X)]. (base-process-class-program(P;loc;hdr) ∈ Id ⟶ hdataflow(Message(f);T)) 
  supposing hdr encodes Id × Info
Proof
Definitions occuring in Statement : 
base-process-class-program: base-process-class-program(X;loc;hdr)
, 
encodes-msg-type: hdr encodes T
, 
Message: Message(f)
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
name: Name
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
local-class: LocalClass(X)
, 
sq_exists: ∃x:{A| B[x]}
, 
base-process-class-program: base-process-class-program(X;loc;hdr)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
encodes-msg-type: hdr encodes T
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
msg-type: msg-type(msg;f)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[loc:Id].  \mforall{}[hdr:Name].
    \mforall{}[P:LocalClass(X)].  (base-process-class-program(P;loc;hdr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Message(f);T)) 
    supposing  hdr  encodes  Id  \mtimes{}  Info
Date html generated:
2016_05_17-AM-09_08_15
Last ObjectModification:
2015_12_29-PM-03_36_01
Theory : local!classes
Home
Index