Nuprl Lemma : base-process-class-program_wf1

[f:Name ⟶ Type]. ∀[Info,T:Type]. ∀[X:EClass(T)]. ∀[loc:Id]. ∀[hdr:Name].
  ∀[P:LocalClass(X)]. (base-process-class-program(P;loc;hdr) ∈ Id ⟶ hdataflow(Message(f);T)) 
  supposing hdr encodes Id × Info


Proof




Definitions occuring in Statement :  base-process-class-program: base-process-class-program(X;loc;hdr) encodes-msg-type: hdr encodes T Message: Message(f) local-class: LocalClass(X) eclass: EClass(A[eo; e]) hdataflow: hdataflow(A;B) Id: Id name: Name uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2] local-class: LocalClass(X) sq_exists: x:{A| B[x]} base-process-class-program: base-process-class-program(X;loc;hdr) so_lambda: λ2x.t[x] so_apply: x[s] encodes-msg-type: hdr encodes T guard: {T} all: x:A. B[x] top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q msg-type: msg-type(msg;f) iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False

Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[loc:Id].  \mforall{}[hdr:Name].
    \mforall{}[P:LocalClass(X)].  (base-process-class-program(P;loc;hdr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Message(f);T)) 
    supposing  hdr  encodes  Id  \mtimes{}  Info



Date html generated: 2016_05_17-AM-09_08_15
Last ObjectModification: 2015_12_29-PM-03_36_01

Theory : local!classes


Home Index