Nuprl Lemma : bind-class-program-wf-hdf
∀[Info,A,B:Type].
  ∀[xpr:Id ⟶ hdataflow(Info;A)]. ∀[ypr:A ⟶ Id ⟶ hdataflow(Info;B)].  (xpr >>= ypr ∈ Id ⟶ hdataflow(Info;B)) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
bind-class-program: xpr >>= ypr, 
hdataflow: hdataflow(A;B), 
Id: Id, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bind-class-program: xpr >>= ypr
Latex:
\mforall{}[Info,A,B:Type].
    \mforall{}[xpr:Id  {}\mrightarrow{}  hdataflow(Info;A)].  \mforall{}[ypr:A  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
        (xpr  >>=  ypr  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B)) 
    supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_06_51
Last ObjectModification:
2015_12_29-PM-03_36_08
Theory : local!classes
Home
Index