Nuprl Lemma : bind-class_local

[Info,A,B:Type].
  ∀[X:EClass(A)]. ∀[Y:A ⟶ EClass(B)].  (LocalClass(X)  (∀a:A. LocalClass(Y[a]))  LocalClass(X >a> Y[a])) 
  supposing valueall-type(B)


Proof




Definitions occuring in Statement :  bind-class: X >x> Y[x] local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T valueall-type: valueall-type(T) has-value: (a)↓ prop: implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2]

Latex:
\mforall{}[Info,A,B:Type].
    \mforall{}[X:EClass(A)].  \mforall{}[Y:A  {}\mrightarrow{}  EClass(B)].
        (LocalClass(X)  {}\mRightarrow{}  (\mforall{}a:A.  LocalClass(Y[a]))  {}\mRightarrow{}  LocalClass(X  >a>  Y[a])) 
    supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_06_54
Last ObjectModification: 2015_12_29-PM-03_36_10

Theory : local!classes


Home Index