Nuprl Lemma : class-at-program-wf-hdf

[A,B:Type]. ∀[pr:Id ⟶ hdataflow(A;B)]. ∀[locs:bag(Id)].  (pr)@locs ∈ Id ⟶ hdataflow(A;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  class-at-program: (pr)@locs hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a class-at-program: (pr)@locs

Latex:
\mforall{}[A,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[locs:bag(Id)].
    (pr)@locs  \mmember{}  Id  {}\mrightarrow{}  hdataflow(A;B)  supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_09_02
Last ObjectModification: 2015_12_29-PM-03_35_18

Theory : local!classes


Home Index