Nuprl Lemma : eclass-state-program_wf

[Info,A,B:Type]. ∀[init:Id ⟶ B]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)]. ∀[pr:LocalClass(X)].
  eclass-state-program(init;f;pr) ∈ LocalClass(eclass-state(init;f;X)) supposing valueall-type(B) ∧ (↓B)


Proof




Definitions occuring in Statement :  eclass-state-program: eclass-state-program(init;f;pr) eclass-state: eclass-state(init;f;X) local-class: LocalClass(X) eclass: EClass(A[eo; e]) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] squash: T and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q squash: T eclass-state-program: eclass-state-program(init;f;pr) eclass-state: eclass-state(init;f;X) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2]

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[pr:LocalClass(X)].
    eclass-state-program(init;f;pr)  \mmember{}  LocalClass(eclass-state(init;f;X)) 
    supposing  valueall-type(B)  \mwedge{}  (\mdownarrow{}B)



Date html generated: 2016_05_17-AM-09_07_01
Last ObjectModification: 2016_01_17-PM-09_13_15

Theory : local!classes


Home Index