Nuprl Lemma : eclass-state-program_wf
∀[Info,A,B:Type]. ∀[init:Id ⟶ B]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[X:EClass(A)]. ∀[pr:LocalClass(X)].
  eclass-state-program(init;f;pr) ∈ LocalClass(eclass-state(init;f;X)) supposing valueall-type(B) ∧ (↓B)
Proof
Definitions occuring in Statement : 
eclass-state-program: eclass-state-program(init;f;pr)
, 
eclass-state: eclass-state(init;f;X)
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
squash: ↓T
, 
eclass-state-program: eclass-state-program(init;f;pr)
, 
eclass-state: eclass-state(init;f;X)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[pr:LocalClass(X)].
    eclass-state-program(init;f;pr)  \mmember{}  LocalClass(eclass-state(init;f;X)) 
    supposing  valueall-type(B)  \mwedge{}  (\mdownarrow{}B)
Date html generated:
2016_05_17-AM-09_07_01
Last ObjectModification:
2016_01_17-PM-09_13_15
Theory : local!classes
Home
Index