Nuprl Lemma : eclass1-program-wf-hdf

[Info,B,C:Type].
  ∀[f:Id ⟶ B ⟶ C]. ∀[pr:Id ⟶ hdataflow(Info;B)].  (eclass1-program(f;pr) ∈ Id ⟶ hdataflow(Info;C)) 
  supposing valueall-type(C)


Proof




Definitions occuring in Statement :  eclass1-program: eclass1-program(f;pr) hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eclass1-program: eclass1-program(f;pr)

Latex:
\mforall{}[Info,B,C:Type].
    \mforall{}[f:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(Info;B)].
        (eclass1-program(f;pr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;C)) 
    supposing  valueall-type(C)



Date html generated: 2016_05_17-AM-09_04_42
Last ObjectModification: 2015_12_29-PM-03_36_47

Theory : local!classes


Home Index