Nuprl Lemma : eclass2-program-eq-hdf

[Info,B,C:Type].
  ∀[Xpr1,Xpr2:Id ⟶ hdataflow(Info;B ⟶ bag(C))]. ∀[Ypr1,Ypr2:Id ⟶ hdataflow(Info;B)].
    (Xpr1 Ypr1 Xpr2 Ypr2 ∈ (Id ⟶ hdataflow(Info;C))) supposing 
       ((Xpr1 Xpr2 ∈ (Id ⟶ hdataflow(Info;B ⟶ bag(C)))) and 
       (Ypr1 Ypr2 ∈ (Id ⟶ hdataflow(Info;B)))) 
  supposing valueall-type(C)


Proof




Definitions occuring in Statement :  eclass2-program: Xpr Ypr hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eclass2-program: Xpr Ypr squash: T prop:

Latex:
\mforall{}[Info,B,C:Type].
    \mforall{}[Xpr1,Xpr2:Id  {}\mrightarrow{}  hdataflow(Info;B  {}\mrightarrow{}  bag(C))].  \mforall{}[Ypr1,Ypr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
        (Xpr1  o  Ypr1  =  Xpr2  o  Ypr2)  supposing  ((Xpr1  =  Xpr2)  and  (Ypr1  =  Ypr2)) 
    supposing  valueall-type(C)



Date html generated: 2016_05_17-AM-09_04_54
Last ObjectModification: 2016_01_17-PM-09_14_13

Theory : local!classes


Home Index