Nuprl Lemma : eclass3-program_wf

[Info,B,C:Type].
  ∀[X:EClass(B ⟶ C)]. ∀[Y:EClass(B)]. ∀[Xpr:LocalClass(X)]. ∀[Ypr:LocalClass(Y)].
    (eclass3-program(Xpr;Ypr) ∈ LocalClass(eclass3(X;Y))) 
  supposing valueall-type(C)


Proof




Definitions occuring in Statement :  eclass3-program: eclass3-program(Xpr;Ypr) eclass3: eclass3(X;Y) local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a local-class: LocalClass(X) sq_exists: x:{A| B[x]} eclass3-program: eclass3-program(Xpr;Ypr) all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] eclass3: eclass3(X;Y) class-ap: X(e) squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top ext-eq: A ≡ B hdf-compose3: Y mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-halted: hdf-halted(P) hdf-ap: X(a) hdf-run: hdf-run(P) hdf-halt: hdf-halt() ifthenelse: if then else fi  bor: p ∨bq isr: isr(x) bfalse: ff pi2: snd(t) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt pi1: fst(t)

Latex:
\mforall{}[Info,B,C:Type].
    \mforall{}[X:EClass(B  {}\mrightarrow{}  C)].  \mforall{}[Y:EClass(B)].  \mforall{}[Xpr:LocalClass(X)].  \mforall{}[Ypr:LocalClass(Y)].
        (eclass3-program(Xpr;Ypr)  \mmember{}  LocalClass(eclass3(X;Y))) 
    supposing  valueall-type(C)



Date html generated: 2016_05_17-AM-09_05_01
Last ObjectModification: 2016_01_17-PM-09_18_03

Theory : local!classes


Home Index