Nuprl Lemma : eclass3_local

[Info,B,C:Type]. ∀[X:EClass(B ⟶ C)]. ∀[Y:EClass(B)].
  LocalClass(X)  LocalClass(Y)  LocalClass(eclass3(X;Y)) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  eclass3: eclass3(X;Y) local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T valueall-type: valueall-type(T) has-value: (a)↓ prop: implies:  Q so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2]

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  C)].  \mforall{}[Y:EClass(B)].
    LocalClass(X)  {}\mRightarrow{}  LocalClass(Y)  {}\mRightarrow{}  LocalClass(eclass3(X;Y))  supposing  valueall-type(C)



Date html generated: 2016_05_17-AM-09_05_03
Last ObjectModification: 2015_12_29-PM-03_36_38

Theory : local!classes


Home Index