Nuprl Lemma : hdf-parallel-bind-eq

[A,B,C:Type]. ∀[X1,X2:hdataflow(A;B)]. ∀[X:B ⟶ hdataflow(A;C)].
  (X1 >>|| X2 >>X1 || X2 >>X ∈ hdataflow(A;C)) supposing (valueall-type(C) and valueall-type(B))


Proof




Definitions occuring in Statement :  hdf-bind: X >>Y hdf-parallel: || Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a parallel-class-program: || Y bind-class-program: xpr >>ypr mkid: "$x" Id: Id guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: squash: T

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X1,X2:hdataflow(A;B)].  \mforall{}[X:B  {}\mrightarrow{}  hdataflow(A;C)].
    (X1  >>=  X  ||  X2  >>=  X  =  X1  ||  X2  >>=  X)  supposing  (valueall-type(C)  and  valueall-type(B))



Date html generated: 2016_05_17-AM-09_12_19
Last ObjectModification: 2016_01_17-PM-09_11_54

Theory : local!classes


Home Index