Nuprl Lemma : hdf-parallel-bind-halt-eq-gen

[A,B1,B2,C:Type]. ∀[X1:hdataflow(A;B1)]. ∀[X2:hdataflow(A;B2)]. ∀[Y1:B1 ⟶ hdataflow(A;C)]. ∀[Y2:B2 ⟶ hdataflow(A;C)].
  (∀inputs:A List
     hdf-halted(X1 >>Y1 || X2 >>Y2*(inputs)) 
     hdf-halted(X1 X2 >>= λx.case of inl(b1) => Y1[b1] inr(b2) => Y2[b2]*(inputs))) supposing 
     (valueall-type(C) and 
     valueall-type(B1) and 
     valueall-type(B2))


Proof




Definitions occuring in Statement :  hdf-bind: X >>Y hdf-union: Y hdf-parallel: || Y iterate-hdataflow: P*(inputs) hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B) list: List valueall-type: valueall-type(T) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] decide: case of inl(x) => s[x] inr(y) => t[y] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q so_apply: x[s] sq_type: SQType(T) guard: {T} compose: g squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: subtype_rel: A ⊆B

Latex:
\mforall{}[A,B1,B2,C:Type].  \mforall{}[X1:hdataflow(A;B1)].  \mforall{}[X2:hdataflow(A;B2)].  \mforall{}[Y1:B1  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[Y2:B2  {}\mrightarrow{}  hdataflow(A;C)].
    (\mforall{}inputs:A  List
          hdf-halted(X1  >>=  Y1  ||  X2  >>=  Y2*(inputs)) 
          =  hdf-halted(X1  +  X2
                                      >>=  \mlambda{}x.case  x  of  inl(b1)  =>  Y1[b1]  |  inr(b2)  =>  Y2[b2]*(inputs)))  supposing 
          (valueall-type(C)  and 
          valueall-type(B1)  and 
          valueall-type(B2))



Date html generated: 2016_05_17-AM-09_12_08
Last ObjectModification: 2016_01_17-PM-09_12_47

Theory : local!classes


Home Index