Nuprl Lemma : hdf-parallel-bind-halt-eq
∀[A,B,C:Type]. ∀[X1,X2:hdataflow(A;B)]. ∀[X:B ⟶ hdataflow(A;C)].
(∀inputs:A List. hdf-halted(X1 >>= X || X2 >>= X*(inputs)) = hdf-halted(X1 || X2 >>= X*(inputs))) supposing
(valueall-type(C) and
valueall-type(B))
Proof
Definitions occuring in Statement :
hdf-bind: X >>= Y
,
hdf-parallel: X || Y
,
iterate-hdataflow: P*(inputs)
,
hdf-halted: hdf-halted(P)
,
hdataflow: hdataflow(A;B)
,
list: T List
,
valueall-type: valueall-type(T)
,
bool: 𝔹
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
hdf-bind: X >>= Y
,
implies: P
⇒ Q
,
hdf-bind-gen: X (hdfs) >>= Y
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
and: P ∧ Q
,
top: Top
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
hdf-parallel: X || Y
,
bind-nxt: bind-nxt(Y;p;a)
,
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
hdf-ap: X(a)
,
hdf-halt: hdf-halt()
,
exposed-bfalse: exposed-bfalse
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
empty-bag: {}
,
nil: []
,
bfalse: ff
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
iff: P
⇐⇒ Q
,
cand: A c∧ B
,
rev_implies: P
⇐ Q
,
true: True
,
pi1: fst(t)
,
subtype_rel: A ⊆r B
,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
pi2: snd(t)
,
squash: ↓T
Latex:
\mforall{}[A,B,C:Type]. \mforall{}[X1,X2:hdataflow(A;B)]. \mforall{}[X:B {}\mrightarrow{} hdataflow(A;C)].
(\mforall{}inputs:A List
hdf-halted(X1 >>= X || X2 >>= X*(inputs)) = hdf-halted(X1 || X2 >>= X*(inputs))) supposing
(valueall-type(C) and
valueall-type(B))
Date html generated:
2016_05_17-AM-09_12_05
Last ObjectModification:
2016_01_17-PM-09_18_07
Theory : local!classes
Home
Index