Nuprl Lemma : loop-class-state-program_wf
∀[Info,B:Type].
∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[pr:LocalClass(X)].
(loop-class-state-program(pr;init) ∈ LocalClass(loop-class-state(X;init)))
supposing valueall-type(B)
Proof
Definitions occuring in Statement :
loop-class-state-program: loop-class-state-program(pr;init)
,
loop-class-state: loop-class-state(X;init)
,
local-class: LocalClass(X)
,
eclass: EClass(A[eo; e])
,
Id: Id
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
local-class: LocalClass(X)
,
sq_exists: ∃x:{A| B[x]}
,
loop-class-state-program: loop-class-state-program(pr;init)
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
so_apply: x[s]
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
class-ap: X(e)
,
es-before: before(e)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
true: True
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
iff: P
⇐⇒ Q
,
hdf-state: hdf-state(X;bs)
,
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
,
hdf-ap: X(a)
,
hdf-run: hdf-run(P)
,
Id: Id
,
es-E: E
,
es-base-E: es-base-E(es)
,
rev_implies: P
⇐ Q
,
ext-eq: A ≡ B
,
pi1: fst(t)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
empty-bag: {}
,
nil: []
,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
loop-class-state: loop-class-state(X;init)
,
eclass-cond: eclass-cond(X;Y)
,
eclass3: eclass3(X;Y)
,
member-eclass: e ∈b X
,
pi2: snd(t)
,
hdf-halt: hdf-halt()
,
eq_int: (i =z j)
,
bag-map: bag-map(f;bs)
,
bag-combine: ⋃x∈bs.f[x]
,
bag-null: bag-null(bs)
,
map: map(f;as)
,
bag-union: bag-union(bbs)
,
null: null(as)
,
cons: [a / b]
,
list_ind: list_ind,
concat: concat(ll)
,
bottom: ⊥
,
append: as @ bs
,
reduce: reduce(f;k;as)
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
Latex:
\mforall{}[Info,B:Type].
\mforall{}[X:EClass(B {}\mrightarrow{} B)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[pr:LocalClass(X)].
(loop-class-state-program(pr;init) \mmember{} LocalClass(loop-class-state(X;init)))
supposing valueall-type(B)
Date html generated:
2016_05_17-AM-09_07_28
Last ObjectModification:
2016_01_17-PM-09_17_22
Theory : local!classes
Home
Index