Nuprl Lemma : loop-class_local

[Info,B:Type]. ∀[X:EClass(B ⟶ bag(B))].
  ∀init:Id ⟶ bag(B). LocalClass(X)  LocalClass(loop-class(X;init)) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  loop-class: loop-class(X;init) local-class: LocalClass(X) eclass: EClass(A[eo; e]) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T valueall-type: valueall-type(T) has-value: (a)↓ prop: implies:  Q so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2]

Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  bag(B))].
    \mforall{}init:Id  {}\mrightarrow{}  bag(B).  LocalClass(X)  {}\mRightarrow{}  LocalClass(loop-class(X;init))  supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_06_11
Last ObjectModification: 2015_12_29-PM-03_36_20

Theory : local!classes


Home Index