Nuprl Lemma : loop-class_local
∀[Info,B:Type]. ∀[X:EClass(B ⟶ bag(B))].
  ∀init:Id ⟶ bag(B). LocalClass(X) 
⇒ LocalClass(loop-class(X;init)) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
loop-class: loop-class(X;init)
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
valueall-type: valueall-type(T)
, 
has-value: (a)↓
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  bag(B))].
    \mforall{}init:Id  {}\mrightarrow{}  bag(B).  LocalClass(X)  {}\mRightarrow{}  LocalClass(loop-class(X;init))  supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_06_11
Last ObjectModification:
2015_12_29-PM-03_36_20
Theory : local!classes
Home
Index