Nuprl Lemma : null-class-program_wf
∀[Info,B:Type].  (null-class-program() ∈ LocalClass(Null))
Proof
Definitions occuring in Statement : 
null-class-program: null-class-program(), 
null-class: Null, 
local-class: LocalClass(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
null-class-program: null-class-program(), 
null-class: Null, 
hdf-return: hdf-return(x), 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
all: ∀x:A. B[x], 
class-ap: X(e), 
es-before: before(e), 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
top: Top, 
pi2: snd(t), 
hdf-ap: X(a), 
hdf-run: hdf-run(P), 
empty-bag: {}, 
nil: [], 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
cons: [a / b], 
pi1: fst(t), 
hdf-halt: hdf-halt(), 
so_lambda: λ2x.t[x], 
eclass: EClass(A[eo; e]), 
so_apply: x[s]
Latex:
\mforall{}[Info,B:Type].    (null-class-program()  \mmember{}  LocalClass(Null))
Date html generated:
2016_05_17-AM-09_09_28
Last ObjectModification:
2016_01_17-PM-09_12_57
Theory : local!classes
Home
Index