Nuprl Lemma : on-loc-class-program-eq-hdf

[Info,B:Type]. ∀[pr1,pr2:Id ⟶ Id ⟶ hdataflow(Info;B)].
  (on-loc-class-program(pr1) on-loc-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B))) supposing 
     ((pr1 pr2 ∈ (Id ⟶ Id ⟶ hdataflow(Info;B))) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  on-loc-class-program: on-loc-class-program(pr) hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a on-loc-class-program: on-loc-class-program(pr) prop:

Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
    (on-loc-class-program(pr1)  =  on-loc-class-program(pr2))  supposing 
          ((pr1  =  pr2)  and 
          valueall-type(B))



Date html generated: 2016_05_17-AM-09_09_14
Last ObjectModification: 2015_12_29-PM-03_35_36

Theory : local!classes


Home Index