Nuprl Lemma : on-loc-class-program-eq-hdf
∀[Info,B:Type]. ∀[pr1,pr2:Id ⟶ Id ⟶ hdataflow(Info;B)].
  (on-loc-class-program(pr1) = on-loc-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B))) supposing 
     ((pr1 = pr2 ∈ (Id ⟶ Id ⟶ hdataflow(Info;B))) and 
     valueall-type(B))
Proof
Definitions occuring in Statement : 
on-loc-class-program: on-loc-class-program(pr)
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
on-loc-class-program: on-loc-class-program(pr)
, 
prop: ℙ
Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
    (on-loc-class-program(pr1)  =  on-loc-class-program(pr2))  supposing 
          ((pr1  =  pr2)  and 
          valueall-type(B))
Date html generated:
2016_05_17-AM-09_09_14
Last ObjectModification:
2015_12_29-PM-03_35_36
Theory : local!classes
Home
Index