Nuprl Lemma : on-loc-class-program-wf-hdf
∀[Info,B:Type]. ∀[pr:Id ⟶ Id ⟶ hdataflow(Info;B)].
  on-loc-class-program(pr) ∈ Id ⟶ hdataflow(Info;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
on-loc-class-program: on-loc-class-program(pr)
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
on-loc-class-program: on-loc-class-program(pr)
Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
    on-loc-class-program(pr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B)  supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_09_12
Last ObjectModification:
2015_12_29-PM-03_35_08
Theory : local!classes
Home
Index