Nuprl Lemma : on-loc-class-program-wf-hdf
∀[Info,B:Type]. ∀[pr:Id ⟶ Id ⟶ hdataflow(Info;B)].
on-loc-class-program(pr) ∈ Id ⟶ hdataflow(Info;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement :
on-loc-class-program: on-loc-class-program(pr)
,
hdataflow: hdataflow(A;B)
,
Id: Id
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
on-loc-class-program: on-loc-class-program(pr)
Latex:
\mforall{}[Info,B:Type]. \mforall{}[pr:Id {}\mrightarrow{} Id {}\mrightarrow{} hdataflow(Info;B)].
on-loc-class-program(pr) \mmember{} Id {}\mrightarrow{} hdataflow(Info;B) supposing valueall-type(B)
Date html generated:
2016_05_17-AM-09_09_12
Last ObjectModification:
2015_12_29-PM-03_35_08
Theory : local!classes
Home
Index