Nuprl Lemma : on-loc-class-program-wf-hdf

[Info,B:Type]. ∀[pr:Id ⟶ Id ⟶ hdataflow(Info;B)].
  on-loc-class-program(pr) ∈ Id ⟶ hdataflow(Info;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  on-loc-class-program: on-loc-class-program(pr) hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a on-loc-class-program: on-loc-class-program(pr)

Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  hdataflow(Info;B)].
    on-loc-class-program(pr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B)  supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_09_12
Last ObjectModification: 2015_12_29-PM-03_35_08

Theory : local!classes


Home Index