Nuprl Lemma : on-loc-class-program_wf
∀[Info,B:Type]. ∀[X:Id ⟶ EClass(B)]. ∀[pr:∀i:Id. LocalClass(X i)].
  on-loc-class-program(pr) ∈ LocalClass(on-loc-class(X)) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
on-loc-class-program: on-loc-class-program(pr), 
on-loc-class: on-loc-class(X), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
Id: Id, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
on-loc-class-program: on-loc-class-program(pr), 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
class-ap: X(e), 
on-loc-class: on-loc-class(X), 
eclass: EClass(A[eo; e]), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:Id  {}\mrightarrow{}  EClass(B)].  \mforall{}[pr:\mforall{}i:Id.  LocalClass(X  i)].
    on-loc-class-program(pr)  \mmember{}  LocalClass(on-loc-class(X))  supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_09_10
Last ObjectModification:
2016_01_17-PM-09_12_16
Theory : local!classes
Home
Index