Nuprl Lemma : once-class-program-eq-hdf
∀[Info,B:Type]. ∀[pr1,pr2:Id ⟶ hdataflow(Info;B)].
  once-class-program(pr1) = once-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B)) 
  supposing pr1 = pr2 ∈ (Id ⟶ hdataflow(Info;B))
Proof
Definitions occuring in Statement : 
once-class-program: once-class-program(pr), 
hdataflow: hdataflow(A;B), 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
once-class-program: once-class-program(pr), 
and: P ∧ Q, 
prop: ℙ
Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
    once-class-program(pr1)  =  once-class-program(pr2)  supposing  pr1  =  pr2
Date html generated:
2016_05_17-AM-09_05_31
Last ObjectModification:
2015_12_29-PM-03_36_51
Theory : local!classes
Home
Index