Nuprl Lemma : once-class-program-eq-hdf
∀[Info,B:Type]. ∀[pr1,pr2:Id ⟶ hdataflow(Info;B)].
once-class-program(pr1) = once-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B))
supposing pr1 = pr2 ∈ (Id ⟶ hdataflow(Info;B))
Proof
Definitions occuring in Statement :
once-class-program: once-class-program(pr)
,
hdataflow: hdataflow(A;B)
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
once-class-program: once-class-program(pr)
,
and: P ∧ Q
,
prop: ℙ
Latex:
\mforall{}[Info,B:Type]. \mforall{}[pr1,pr2:Id {}\mrightarrow{} hdataflow(Info;B)].
once-class-program(pr1) = once-class-program(pr2) supposing pr1 = pr2
Date html generated:
2016_05_17-AM-09_05_31
Last ObjectModification:
2015_12_29-PM-03_36_51
Theory : local!classes
Home
Index