Nuprl Lemma : once-class-program-eq-hdf

[Info,B:Type]. ∀[pr1,pr2:Id ⟶ hdataflow(Info;B)].
  once-class-program(pr1) once-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B)) 
  supposing pr1 pr2 ∈ (Id ⟶ hdataflow(Info;B))


Proof




Definitions occuring in Statement :  once-class-program: once-class-program(pr) hdataflow: hdataflow(A;B) Id: Id uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a once-class-program: once-class-program(pr) and: P ∧ Q prop:

Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
    once-class-program(pr1)  =  once-class-program(pr2)  supposing  pr1  =  pr2



Date html generated: 2016_05_17-AM-09_05_31
Last ObjectModification: 2015_12_29-PM-03_36_51

Theory : local!classes


Home Index