Nuprl Lemma : once-class-program-eq-hdf
∀[Info,B:Type]. ∀[pr1,pr2:Id ⟶ hdataflow(Info;B)].
  once-class-program(pr1) = once-class-program(pr2) ∈ (Id ⟶ hdataflow(Info;B)) 
  supposing pr1 = pr2 ∈ (Id ⟶ hdataflow(Info;B))
Proof
Definitions occuring in Statement : 
once-class-program: once-class-program(pr)
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
once-class-program: once-class-program(pr)
, 
and: P ∧ Q
, 
prop: ℙ
Latex:
\mforall{}[Info,B:Type].  \mforall{}[pr1,pr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
    once-class-program(pr1)  =  once-class-program(pr2)  supposing  pr1  =  pr2
Date html generated:
2016_05_17-AM-09_05_31
Last ObjectModification:
2015_12_29-PM-03_36_51
Theory : local!classes
Home
Index