Nuprl Lemma : once-class-program_wf
∀[Info,B:Type]. ∀[X:EClass(B)]. ∀[pr:LocalClass(X)].  (once-class-program(pr) ∈ LocalClass((X once)))
Proof
Definitions occuring in Statement : 
once-class-program: once-class-program(pr), 
once-class: (X once), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
once-class-program: once-class-program(pr), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q, 
class-pred: class-pred(X;es;e), 
class-ap: X(e), 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
es-before: before(e), 
es-local-pred: last(P), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
hdf-once: hdf-once(X), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
hdf-halt: hdf-halt(), 
hdf-halted: hdf-halted(P), 
hdf-ap: X(a), 
isr: isr(x), 
pi1: fst(t), 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
ext-eq: A ≡ B, 
hdf-run: hdf-run(P), 
true: True, 
pi2: snd(t), 
once-class: (X once), 
until-class: (X until Y), 
empty-bag: {}, 
nil: []
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B)].  \mforall{}[pr:LocalClass(X)].
    (once-class-program(pr)  \mmember{}  LocalClass((X  once)))
Date html generated:
2016_05_17-AM-09_05_27
Last ObjectModification:
2016_01_17-PM-09_15_56
Theory : local!classes
Home
Index