Nuprl Lemma : parallel-class-program-eq-hdf

[Info,B:Type].
  ∀[Xpr1,Xpr2,Ypr1,Ypr2:Id ⟶ hdataflow(Info;B)].
    (Xpr1 || Ypr1 Xpr2 || Ypr2 ∈ (Id ⟶ hdataflow(Info;B))) supposing 
       ((Xpr1 Xpr2 ∈ (Id ⟶ hdataflow(Info;B))) and 
       (Ypr1 Ypr2 ∈ (Id ⟶ hdataflow(Info;B)))) 
  supposing valueall-type(B)


Proof




Definitions occuring in Statement :  parallel-class-program: || Y hdataflow: hdataflow(A;B) Id: Id valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a parallel-class-program: || Y squash: T prop:

Latex:
\mforall{}[Info,B:Type].
    \mforall{}[Xpr1,Xpr2,Ypr1,Ypr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
        (Xpr1  ||  Ypr1  =  Xpr2  ||  Ypr2)  supposing  ((Xpr1  =  Xpr2)  and  (Ypr1  =  Ypr2)) 
    supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_08_54
Last ObjectModification: 2016_01_17-PM-09_12_25

Theory : local!classes


Home Index