Nuprl Lemma : parallel-class-program-eq-hdf
∀[Info,B:Type].
  ∀[Xpr1,Xpr2,Ypr1,Ypr2:Id ⟶ hdataflow(Info;B)].
    (Xpr1 || Ypr1 = Xpr2 || Ypr2 ∈ (Id ⟶ hdataflow(Info;B))) supposing 
       ((Xpr1 = Xpr2 ∈ (Id ⟶ hdataflow(Info;B))) and 
       (Ypr1 = Ypr2 ∈ (Id ⟶ hdataflow(Info;B)))) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y, 
hdataflow: hdataflow(A;B), 
Id: Id, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
parallel-class-program: X || Y, 
squash: ↓T, 
prop: ℙ
Latex:
\mforall{}[Info,B:Type].
    \mforall{}[Xpr1,Xpr2,Ypr1,Ypr2:Id  {}\mrightarrow{}  hdataflow(Info;B)].
        (Xpr1  ||  Ypr1  =  Xpr2  ||  Ypr2)  supposing  ((Xpr1  =  Xpr2)  and  (Ypr1  =  Ypr2)) 
    supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_08_54
Last ObjectModification:
2016_01_17-PM-09_12_25
Theory : local!classes
Home
Index