Nuprl Lemma : parallel-class-program-eq
∀[Info,B:Type].
  ∀[X,Y:EClass(B)]. ∀[Xpr1,Xpr2:LocalClass(X)]. ∀[Ypr1,Ypr2:LocalClass(Y)].
    (Xpr1 || Ypr1 = Xpr2 || Ypr2 ∈ (Id ⟶ hdataflow(Info;B))) supposing 
       ((Xpr1 = Xpr2 ∈ (Id ⟶ hdataflow(Info;B))) and 
       (Ypr1 = Ypr2 ∈ (Id ⟶ hdataflow(Info;B)))) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y, 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
hdataflow: hdataflow(A;B), 
Id: Id, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
squash: ↓T, 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ
Latex:
\mforall{}[Info,B:Type].
    \mforall{}[X,Y:EClass(B)].  \mforall{}[Xpr1,Xpr2:LocalClass(X)].  \mforall{}[Ypr1,Ypr2:LocalClass(Y)].
        (Xpr1  ||  Ypr1  =  Xpr2  ||  Ypr2)  supposing  ((Xpr1  =  Xpr2)  and  (Ypr1  =  Ypr2)) 
    supposing  valueall-type(B)
Date html generated:
2016_05_17-AM-09_08_51
Last ObjectModification:
2016_01_17-PM-09_14_15
Theory : local!classes
Home
Index