Nuprl Lemma : parallel-class-program_wf

[Info,B:Type].
  ∀[X,Y:EClass(B)]. ∀[Xpr:LocalClass(X)]. ∀[Ypr:LocalClass(Y)].  (Xpr || Ypr ∈ LocalClass(X || Y)) 
  supposing valueall-type(B)


Proof




Definitions occuring in Statement :  parallel-class-program: || Y parallel-class: || Y local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a local-class: LocalClass(X) sq_exists: x:{A| B[x]} parallel-class-program: || Y all: x:A. B[x] parallel-class: || Y class-ap: X(e) eclass-compose2: eclass-compose2(f;X;Y) squash: T prop: true: True subtype_rel: A ⊆B implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q top: Top ext-eq: A ≡ B hdf-parallel: || Y mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-halted: hdf-halted(P) hdf-ap: X(a) hdf-run: hdf-run(P) hdf-halt: hdf-halt() ifthenelse: if then else fi  band: p ∧b q isr: isr(x) bfalse: ff pi2: snd(t) btrue: tt pi1: fst(t) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) unit: Unit

Latex:
\mforall{}[Info,B:Type].
    \mforall{}[X,Y:EClass(B)].  \mforall{}[Xpr:LocalClass(X)].  \mforall{}[Ypr:LocalClass(Y)].    (Xpr  ||  Ypr  \mmember{}  LocalClass(X  ||  Y)) 
    supposing  valueall-type(B)



Date html generated: 2016_05_17-AM-09_08_40
Last ObjectModification: 2016_01_17-PM-09_14_30

Theory : local!classes


Home Index