Nuprl Lemma : sequence-class-program_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[Z:EClass(A)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
∀[zpr:LocalClass(Z)].
  sequence-class-program(xpr;ypr;zpr) ∈ LocalClass(sequence-class(X;Y;Z)) supposing valueall-type(A)
Proof
Definitions occuring in Statement : 
sequence-class-program: sequence-class-program(xpr;ypr;zpr), 
sequence-class: sequence-class(X;Y;Z), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
sequence-class-program: sequence-class-program(xpr;ypr;zpr), 
all: ∀x:A. B[x], 
sequence-class: sequence-class(X;Y;Z), 
class-ap: X(e), 
member-eclass: e ∈b X, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
or: P ∨ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
Id: Id, 
sq_type: SQType(T), 
es-locl: (e <loc e'), 
hdf-sequence: hdf-sequence(X;Y;Z), 
not: ¬A, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
cons: [a / b], 
colength: colength(L), 
decidable: Dec(P), 
nil: [], 
less_than: a < b, 
less_than': less_than'(a;b), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
ext-eq: A ≡ B, 
pi1: fst(t), 
bnot: ¬bb, 
assert: ↑b, 
hdf-run: hdf-run(P), 
hdf-halt: hdf-halt(), 
hdf-ap: X(a), 
bag-null: bag-null(bs), 
null: null(as), 
pi2: snd(t), 
empty-bag: {}, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
cand: A c∧ B, 
iterate-hdataflow: P*(inputs), 
list_accum: list_accum, 
map: map(f;as), 
list_ind: list_ind, 
es-le: e ≤loc e' , 
es-le-before: ≤loc(e)
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[Z:EClass(A)].  \mforall{}[xpr:LocalClass(X)].
\mforall{}[ypr:LocalClass(Y)].  \mforall{}[zpr:LocalClass(Z)].
    sequence-class-program(xpr;ypr;zpr)  \mmember{}  LocalClass(sequence-class(X;Y;Z))  supposing  valueall-type(A)
Date html generated:
2016_05_17-AM-09_11_04
Last ObjectModification:
2016_01_17-PM-09_19_13
Theory : local!classes
Home
Index