Nuprl Lemma : state-class1-program-wf-hdf
∀[Info,A,B:Type]. ∀[init:Id ⟶ B]. ∀[f:Id ⟶ A ⟶ B ⟶ B]. ∀[pr:Id ⟶ hdataflow(Info;A)].
  (state-class1-program(init;f;pr) ∈ Id ⟶ hdataflow(Info;B)) supposing (valueall-type(B) and (↓B))
Proof
Definitions occuring in Statement : 
state-class1-program: state-class1-program(init;tr;pr)
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
state-class1-program: state-class1-program(init;tr;pr)
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  B].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(Info;A)].
    (state-class1-program(init;f;pr)  \mmember{}  Id  {}\mrightarrow{}  hdataflow(Info;B))  supposing  (valueall-type(B)  and  (\mdownarrow{}B))
Date html generated:
2016_05_17-AM-09_11_12
Last ObjectModification:
2016_01_17-PM-09_13_27
Theory : local!classes
Home
Index