Nuprl Lemma : until-class-program_wf

[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[Y:EClass(C)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
  (until-class-program(xpr;ypr) ∈ LocalClass((X until Y)))


Proof




Definitions occuring in Statement :  until-class-program: until-class-program(xpr;ypr) until-class: (X until Y) local-class: LocalClass(X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T local-class: LocalClass(X) sq_exists: x:{A| B[x]} until-class-program: until-class-program(xpr;ypr) all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a top: Top implies:  Q so_apply: x[s] prop: guard: {T} and: P ∧ Q class-pred: class-pred(X;es;e) class-ap: X(e) strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T es-before: before(e) es-local-pred: last(P) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  isl: isl(x) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q pi1: fst(t) ext-eq: A ≡ B hdf-run: hdf-run(P) hdf-halt: hdf-halt() pi2: snd(t) bag-null: bag-null(bs) null: null(as) hdf-ap: X(a) empty-bag: {} nil: [] true: True until-class: (X until Y) es-loc: loc(e) es-info: info(e) map: map(f;as) iterate-hdataflow: P*(inputs) hdf-until: hdf-until(X;Y) hdf-halted: hdf-halted(P) record-select: r.x es-first: first(e) es-pred: pred(e) cons: [a b] append: as bs list_ind: list_ind list_accum: list_accum mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) isr: isr(x) bottom: es-eq-E: e' es-dom: es-dom(es) bor: p ∨bq es-base-pred: pred1(e) es-eq: es-eq(es) let: let eq_id: b es-locless: es-locless(es;e1;e2) band: p ∧b q id-deq: IdDeq infix_ap: y atom2-deq: Atom2Deq eq_atom: eq_atom$n(x;y)

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[Y:EClass(C)].  \mforall{}[xpr:LocalClass(X)].  \mforall{}[ypr:LocalClass(Y)].
    (until-class-program(xpr;ypr)  \mmember{}  LocalClass((X  until  Y)))



Date html generated: 2016_05_17-AM-09_05_50
Last ObjectModification: 2016_01_17-PM-09_17_18

Theory : local!classes


Home Index