Nuprl Lemma : Message-extensionality
∀[f:Name ⟶ Type]. ∀[m1,m2:Message(f)].
  uiff(m1 = m2 ∈ Message(f);msg-authentic(m1) = msg-authentic(m2)
  ∧ (msg-header(m1) = msg-header(m2) ∈ Name)
  ∧ (msg-body(m1) = msg-body(m2) ∈ (f msg-header(m1))))
Proof
Definitions occuring in Statement : 
msg-body: msg-body(msg), 
msg-header: msg-header(m), 
msg-authentic: msg-authentic(m), 
Message: Message(f), 
name: Name, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
rev_implies: P ⇐ Q, 
squash: ↓T, 
msg-type: msg-type(msg;f), 
Message: Message(f), 
basicMessage: basicMessage(f), 
msg-body: msg-body(msg), 
msg-header: msg-header(m), 
msg-msg: msg-msg(m), 
pi2: snd(t), 
pi1: fst(t), 
msg-authentic: msg-authentic(m), 
subtype_rel: A ⊆r B
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[m1,m2:Message(f)].
    uiff(m1  =  m2;msg-authentic(m1)  =  msg-authentic(m2)
    \mwedge{}  (msg-header(m1)  =  msg-header(m2))
    \mwedge{}  (msg-body(m1)  =  msg-body(m2)))
Date html generated:
2016_05_17-AM-08_50_46
Last ObjectModification:
2016_01_17-PM-08_35_17
Theory : messages
Home
Index