Nuprl Lemma : assert-has-header-and-in-locs
∀[f:Name ⟶ Type]
  ∀msg:Message(f). ∀hdr:Name. ∀locs:bag(Id).
    ↑has-header-and-in-locs(msg;hdr;locs) ⇐⇒ (msg-header(msg) = hdr ∈ Name) ∧ fst(msg-body(msg)) ↓∈ locs 
    supposing hdr encodes Id × Top
Proof
Definitions occuring in Statement : 
has-header-and-in-locs: has-header-and-in-locs(msg;hdr;locs), 
encodes-msg-type: hdr encodes T, 
msg-body: msg-body(msg), 
msg-header: msg-header(m), 
Message: Message(f), 
Id: Id, 
name: Name, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
pi1: fst(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
has-header-and-in-locs: has-header-and-in-locs(msg;hdr;locs), 
member: t ∈ T, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
encodes-msg-type: hdr encodes T, 
msg-type: msg-type(msg;f), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bag-member: x ↓∈ bs, 
squash: ↓T, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type]
    \mforall{}msg:Message(f).  \mforall{}hdr:Name.  \mforall{}locs:bag(Id).
        \muparrow{}has-header-and-in-locs(msg;hdr;locs)  \mLeftarrow{}{}\mRightarrow{}  (msg-header(msg)  =  hdr)  \mwedge{}  fst(msg-body(msg))  \mdownarrow{}\mmember{}  locs 
        supposing  hdr  encodes  Id  \mtimes{}  Top
Date html generated:
2016_05_17-AM-08_53_05
Last ObjectModification:
2016_01_17-PM-08_35_27
Theory : messages
Home
Index