Nuprl Lemma : assert-test-msg-header-and-loc
∀[f:Name ⟶ Type]
  ∀msg:Message(f). ∀hdr:Name. ∀loc:Id.
    uiff(↑test-msg-header-and-loc(msg;hdr;loc);(msg-header(msg) = hdr ∈ Name) ∧ (loc = (fst(msg-body(msg))) ∈ Id)) 
    supposing hdr encodes Id × Top
Proof
Definitions occuring in Statement : 
test-msg-header-and-loc: test-msg-header-and-loc(msg;hdr;loc), 
encodes-msg-type: hdr encodes T, 
msg-body: msg-body(msg), 
msg-header: msg-header(m), 
Message: Message(f), 
Id: Id, 
name: Name, 
assert: ↑b, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
pi1: fst(t), 
all: ∀x:A. B[x], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
test-msg-header-and-loc: test-msg-header-and-loc(msg;hdr;loc), 
member: t ∈ T, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
encodes-msg-type: hdr encodes T, 
msg-type: msg-type(msg;f), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type]
    \mforall{}msg:Message(f).  \mforall{}hdr:Name.  \mforall{}loc:Id.
        uiff(\muparrow{}test-msg-header-and-loc(msg;hdr;loc);(msg-header(msg)  =  hdr)
        \mwedge{}  (loc  =  (fst(msg-body(msg))))) 
        supposing  hdr  encodes  Id  \mtimes{}  Top
Date html generated:
2016_05_17-AM-08_52_34
Last ObjectModification:
2015_12_29-PM-02_55_28
Theory : messages
Home
Index