Nuprl Lemma : constrained-msg-interface-valueall-type
∀[f:Name ⟶ Type]. ∀[locs:Id List]. ∀[hdrs:Name List].
  valueall-type(Interface(to locs, with hdrs)) supposing (∀h∈hdrs.valueall-type(f h))
Proof
Definitions occuring in Statement : 
constrained-msg-interface: Interface(to locs, with hdrs), 
Id: Id, 
name: Name, 
l_all: (∀x∈L.P[x]), 
list: T List, 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
valueall-type: valueall-type(T), 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
constrained-msg-interface: Interface(to locs, with hdrs), 
msg-interface: Interface, 
Message: Message(f), 
basicMessage: basicMessage(f), 
msg-interface-message: mi.msg, 
msg-header: msg-header(m), 
pi2: snd(t), 
msg-msg: msg-msg(m), 
pi1: fst(t), 
sq_stable: SqStable(P), 
and: P ∧ Q, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
l_all: (∀x∈L.P[x]), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
prop: ℙ, 
cand: A c∧ B, 
name: Name, 
sq_type: SQType(T), 
guard: {T}, 
squash: ↓T, 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
has-valueall: has-valueall(a), 
bool: 𝔹, 
unit: Unit
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[locs:Id  List].  \mforall{}[hdrs:Name  List].
    valueall-type(Interface(to  locs,  with  hdrs))  supposing  (\mforall{}h\mmember{}hdrs.valueall-type(f  h))
Date html generated:
2016_05_17-AM-08_59_53
Last ObjectModification:
2016_01_17-PM-08_32_25
Theory : messages
Home
Index