Nuprl Lemma : global-order-pairwise-compat-msg-interface-constraint
∀f:Name ⟶ Type. ∀hdrs:Name List. ∀X:EClass(Interface).
  (LocalClass(X)
  ⇒ (∀LL:(Id × Message(f)) List List
        ((∀L1,L2∈LL.  L1 || L2)
        ⇒ (∀L∈LL.eo-msg-interface-constraint(global-eo(L);X;hdrs;f))
        ⇒ (∃G:(Id × Message(f)) List
             (eo-msg-interface-constraint(global-eo(G);X;hdrs;f)
             ∧ (∀L∈LL.∃g:E ⟶ E. es-local-embedding(Message(f);global-eo(L);global-eo(G);g)))))))
Proof
Definitions occuring in Statement : 
eo-msg-interface-constraint: eo-msg-interface-constraint(es;X;hdrs;f), 
msg-interface: Interface, 
Message: Message(f), 
global-order-compat: L1 || L2, 
global-eo: global-eo(L), 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
es-local-embedding: es-local-embedding(Info;eo1;eo2;f), 
es-E: E, 
Id: Id, 
name: Name, 
pairwise: (∀x,y∈L.  P[x; y]), 
l_all: (∀x∈L.P[x]), 
list: T List, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
label: ...$L... t, 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
exists: ∃x:A. B[x], 
listp: A List+, 
uimplies: b supposing a, 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
ge: i ≥ j , 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
true: True, 
not: ¬A, 
false: False, 
cons: [a / b], 
top: Top, 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_apply: x[s1;s2;s3;s4], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
eo-msg-interface-constraint: eo-msg-interface-constraint(es;X;hdrs;f), 
squash-causal-invariant: squash-causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2]), 
es-local-relation: es-local-relation(i,j,L1,L2.R[i; j; L1; L2];es;e1;e2), 
es-local-property: es-local-property(i,L.P[i; L];es;e), 
es-le-before: ≤loc(e), 
subtype_rel: A ⊆r B, 
last: last(L), 
subtract: n - m, 
select: L[n], 
es-header: header(e), 
squash: ↓T, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_lambda: λ2x y.t[x; y], 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
classrel: v ∈ X(e), 
class-ap: X(e), 
nat: ℕ, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
less_than: a < b
Latex:
\mforall{}f:Name  {}\mrightarrow{}  Type.  \mforall{}hdrs:Name  List.  \mforall{}X:EClass(Interface).
    (LocalClass(X)
    {}\mRightarrow{}  (\mforall{}LL:(Id  \mtimes{}  Message(f))  List  List
                ((\mforall{}L1,L2\mmember{}LL.    L1  ||  L2)
                {}\mRightarrow{}  (\mforall{}L\mmember{}LL.eo-msg-interface-constraint(global-eo(L);X;hdrs;f))
                {}\mRightarrow{}  (\mexists{}G:(Id  \mtimes{}  Message(f))  List
                          (eo-msg-interface-constraint(global-eo(G);X;hdrs;f)
                          \mwedge{}  (\mforall{}L\mmember{}LL.\mexists{}g:E  {}\mrightarrow{}  E.  es-local-embedding(Message(f);global-eo(L);global-eo(G);g)))))))
Date html generated:
2016_05_17-AM-09_00_32
Last ObjectModification:
2016_01_17-PM-08_35_08
Theory : messages
Home
Index