Nuprl Lemma : interface-cmp-zero
∀[f:Name ⟶ Type]. ∀[locs:Id List]. ∀[hdrs:Name List]. ∀[mcmp:hdr:Name ⟶ comparison(f hdr)].
∀[x,y:Interface(to locs, with hdrs)].
  (((interface-cmp(mcmp;locs;hdrs) x y) = 0 ∈ ℤ)
  ⇒ {(x.delay = y.delay ∈ ℤ)
     ∧ (x.dst = y.dst ∈ Id)
     ∧ msg-authentic(x.msg) = msg-authentic(y.msg)
     ∧ (msg-header(x.msg) = msg-header(y.msg) ∈ Name)
     ∧ ((mcmp msg-header(x.msg) msg-body(x.msg) msg-body(y.msg)) = 0 ∈ ℤ)})
Proof
Definitions occuring in Statement : 
interface-cmp: interface-cmp(mcmp;locs;hdrs), 
constrained-msg-interface: Interface(to locs, with hdrs), 
msg-interface-delay: mi.delay, 
msg-interface-message: mi.msg, 
msg-interface-destination: mi.dst, 
msg-body: msg-body(msg), 
msg-header: msg-header(m), 
msg-authentic: msg-authentic(m), 
Id: Id, 
name: Name, 
comparison: comparison(T), 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
constrained-msg-interface: Interface(to locs, with hdrs), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
comparison: comparison(T), 
all: ∀x:A. B[x], 
guard: {T}, 
interface-cmp: interface-cmp(mcmp;locs;hdrs), 
uiff: uiff(P;Q), 
int-minus-comparison: int-minus-comparison(f), 
compare-fun: compare-fun(cmp;f), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable: Dec(P), 
or: P ∨ Q, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
msg-interface-destination: mi.dst, 
pi1: fst(t), 
pi2: snd(t)
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[locs:Id  List].  \mforall{}[hdrs:Name  List].  \mforall{}[mcmp:hdr:Name  {}\mrightarrow{}  comparison(f  hdr)].
\mforall{}[x,y:Interface(to  locs,  with  hdrs)].
    (((interface-cmp(mcmp;locs;hdrs)  x  y)  =  0)
    {}\mRightarrow{}  \{(x.delay  =  y.delay)
          \mwedge{}  (x.dst  =  y.dst)
          \mwedge{}  msg-authentic(x.msg)  =  msg-authentic(y.msg)
          \mwedge{}  (msg-header(x.msg)  =  msg-header(y.msg))
          \mwedge{}  ((mcmp  msg-header(x.msg)  msg-body(x.msg)  msg-body(y.msg))  =  0)\})
Date html generated:
2016_05_17-AM-09_03_52
Last ObjectModification:
2016_01_17-PM-08_34_02
Theory : messages
Home
Index