Nuprl Lemma : local-simulation-input-validity_wf
∀[f,g:Name ⟶ Type]. ∀[X:EClass(Interface)]. ∀[es:EO+(Message(f))]. ∀[hdr:Name]. ∀[locs:bag(Id)].
  ∀[hdrs:Name List]. ∀[i:Id].  (local-simulation-input-validity(g;X;hdr;locs;hdrs;es;i) ∈ ℙ) 
  supposing hdr encodes Id × Message(g)
Proof
Definitions occuring in Statement : 
local-simulation-input-validity: local-simulation-input-validity(g;X;hdr;locs;hdrs;es;i), 
msg-interface: Interface, 
encodes-msg-type: hdr encodes T, 
Message: Message(f), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
name: Name, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
local-simulation-input-validity: local-simulation-input-validity(g;X;hdr;locs;hdrs;es;i), 
subtype_rel: A ⊆r B, 
encodes-msg-type: hdr encodes T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
es-info-type: es-info-type(es;e;f), 
msg-type: msg-type(msg;f), 
rev_implies: P ⇐ Q, 
msg-interface: Interface, 
exists: ∃x:A. B[x], 
label: ...$L... t
Latex:
\mforall{}[f,g:Name  {}\mrightarrow{}  Type].  \mforall{}[X:EClass(Interface)].  \mforall{}[es:EO+(Message(f))].  \mforall{}[hdr:Name].  \mforall{}[locs:bag(Id)].
    \mforall{}[hdrs:Name  List].  \mforall{}[i:Id].    (local-simulation-input-validity(g;X;hdr;locs;hdrs;es;i)  \mmember{}  \mBbbP{}) 
    supposing  hdr  encodes  Id  \mtimes{}  Message(g)
Date html generated:
2016_05_17-AM-09_01_55
Last ObjectModification:
2015_12_29-PM-02_51_10
Theory : messages
Home
Index