Nuprl Lemma : mk-msg-equal
∀[f:Name ⟶ Type]. ∀[auth1,auth2:𝔹]. ∀[hdr1,hdr2:Name]. ∀[val1:f hdr1]. ∀[val2:f hdr2].
  (mk-msg(auth1;hdr1;val1) = mk-msg(auth2;hdr2;val2) ∈ Message(f)
  ⇐⇒ {auth1 = auth2 ∧ (hdr1 = hdr2 ∈ Name) ∧ (val1 = val2 ∈ (f hdr1))})
Proof
Definitions occuring in Statement : 
mk-msg: mk-msg(auth;hdr;val), 
Message: Message(f), 
name: Name, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
mk-msg: mk-msg(auth;hdr;val), 
Message: Message(f), 
make-basicMsg: make-basicMsg(hdr;val), 
basicMessage: basicMessage(f), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
pi1: fst(t), 
sq_type: SQType(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
squash: ↓T, 
name: Name
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[auth1,auth2:\mBbbB{}].  \mforall{}[hdr1,hdr2:Name].  \mforall{}[val1:f  hdr1].  \mforall{}[val2:f  hdr2].
    (mk-msg(auth1;hdr1;val1)  =  mk-msg(auth2;hdr2;val2)
    \mLeftarrow{}{}\mRightarrow{}  \{auth1  =  auth2  \mwedge{}  (hdr1  =  hdr2)  \mwedge{}  (val1  =  val2)\})
Date html generated:
2016_05_17-AM-08_57_33
Last ObjectModification:
2016_01_17-PM-08_32_49
Theory : messages
Home
Index