Nuprl Lemma : sequential-composition-inputs_wf
∀[Info:Type]. ∀[f:Name ⟶ Type]. ∀[X:EClass(Interface)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[hdr:Name].
  sequential-composition-inputs(es;e;X;hdr) ∈ Message(f) List supposing single-valued-on-header{i:l}(Info;X;hdr)
Proof
Definitions occuring in Statement : 
sequential-composition-inputs: sequential-composition-inputs(es;e;X;hdr), 
single-valued-on-header: single-valued-on-header{i:l}(Info;X;hdr), 
msg-interface: Interface, 
Message: Message(f), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
name: Name, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
sequential-composition-inputs: sequential-composition-inputs(es;e;X;hdr), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top
Latex:
\mforall{}[Info:Type].  \mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[X:EClass(Interface)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[hdr:Name].
    sequential-composition-inputs(es;e;X;hdr)  \mmember{}  Message(f)  List 
    supposing  single-valued-on-header\{i:l\}(Info;X;hdr)
Date html generated:
2016_05_17-AM-09_01_45
Last ObjectModification:
2016_01_17-PM-08_32_54
Theory : messages
Home
Index