Nuprl Lemma : strong-message-constraint-no-rep-large-1hdr
∀[f:Name ⟶ Type]. ∀[es:EO+(Message(f))]. ∀[X:EClass(Id × Message(f))]. ∀[hdrs:Name List].
(no_repeats(Name;hdrs)
⇒ strong-message-constraint-no-rep-large{i:l}(es;X;hdrs;f)
⇒ (∀hdr:Name. ((hdr ∈ hdrs)
⇒ strong-message-constraint-no-rep-large{i:l}(es;X;[hdr];f))))
Proof
Definitions occuring in Statement :
strong-message-constraint-no-rep-large: strong-message-constraint-no-rep-large{i:l}(es;X;hdrs;f)
,
Message: Message(f)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
Id: Id
,
name: Name
,
no_repeats: no_repeats(T;l)
,
l_member: (x ∈ l)
,
cons: [a / b]
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
strong-message-constraint-no-rep-large: strong-message-constraint-no-rep-large{i:l}(es;X;hdrs;f)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
label: ...$L... t
,
iff: P
⇐⇒ Q
,
name: Name
,
sq_type: SQType(T)
,
guard: {T}
,
delivered-with-headers: delivered-with-headers(hdrs;es;e)
,
true: True
,
rev_implies: P
⇐ Q
,
top: Top
,
uiff: uiff(P;Q)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
or: P ∨ Q
,
append: as @ bs
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bnot: ¬bb
,
false: False
,
not: ¬A
,
deq: EqDecider(T)
Latex:
\mforall{}[f:Name {}\mrightarrow{} Type]. \mforall{}[es:EO+(Message(f))]. \mforall{}[X:EClass(Id \mtimes{} Message(f))]. \mforall{}[hdrs:Name List].
(no\_repeats(Name;hdrs)
{}\mRightarrow{} strong-message-constraint-no-rep-large\{i:l\}(es;X;hdrs;f)
{}\mRightarrow{} (\mforall{}hdr:Name. ((hdr \mmember{} hdrs) {}\mRightarrow{} strong-message-constraint-no-rep-large\{i:l\}(es;X;[hdr];f))))
Date html generated:
2016_05_17-AM-08_56_35
Last ObjectModification:
2016_01_17-PM-08_33_39
Theory : messages
Home
Index