Nuprl Lemma : trivial-equal-info-body
∀[f:Name ⟶ Type]. ∀[es:EO+(Message(f))]. ∀[e:E]. ∀[T:Type].
  uiff(msgval(e) = body(e);True) supposing has-es-info-type(es;e;f;T)
Proof
Definitions occuring in Statement : 
equal-info-body: v = body(e), 
es-info-body: msgval(e), 
has-es-info-type: has-es-info-type(es;e;f;T), 
Message: Message(f), 
event-ordering+: EO+(Info), 
es-E: E, 
name: Name, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
true: True, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
true: True, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
has-es-info-type: has-es-info-type(es;e;f;T), 
equal-info-body: v = body(e)
Latex:
\mforall{}[f:Name  {}\mrightarrow{}  Type].  \mforall{}[es:EO+(Message(f))].  \mforall{}[e:E].  \mforall{}[T:Type].
    uiff(msgval(e)  =  body(e);True)  supposing  has-es-info-type(es;e;f;T)
Date html generated:
2016_05_17-AM-08_51_40
Last ObjectModification:
2015_12_29-PM-02_56_11
Theory : messages
Home
Index