Nuprl Lemma : LTL-identities

es:EO. ∀[P:E ⟶ ℙ]. ([][]P ≡ []P ∧ <><>P ≡ <>P ∧ <>P ≡ (TR ⋃ P) ∧ []¬¬P ≡ ¬<>¬P ∧ ¬¬<>P ≡ ¬[]¬P)


Proof




Definitions occuring in Statement :  es-TR: TR es-equiv: P ≡ Q es-not: ¬P es-until: (P ⋃ Q) es-diamond: <>P es-box: []P es-E: E event_ordering: EO uall: [x:A]. B[x] prop: all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  es-not: ¬P es-box: []P es-diamond: <>P es-equiv: P ≡ Q es-TR: TR es-until: (P ⋃ Q) all: x:A. B[x] uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} exists: x:A. B[x] uimplies: supposing a true: True not: ¬A false: False

Latex:
\mforall{}es:EO.  \mforall{}[P:E  {}\mrightarrow{}  \mBbbP{}].  ([][]P  \mequiv{}  []P  \mwedge{}  <><>P  \mequiv{}  <>P  \mwedge{}  <>P  \mequiv{}  (TR  \mcup{}  P)  \mwedge{}  []\mneg{}\mneg{}P  \mequiv{}  \mneg{}<>\mneg{}P  \mwedge{}  \mneg{}\mneg{}<>P  \mequiv{}  \mneg{}[]\mneg{}P)



Date html generated: 2016_05_16-AM-09_48_38
Last ObjectModification: 2015_12_28-PM-09_41_29

Theory : new!event-ordering


Home Index