Nuprl Lemma : alle-between1-not-first-since

[es:EO]. ∀[e1:E]. ∀[e2:{e:E| loc(e) loc(e1) ∈ Id} ]. ∀[p:{e:E| loc(e) loc(e1) ∈ Id}  ⟶ ℙ].
  uiff(∀e∈[e1,e2).¬first e ≥ e1.p[e];∀e∈[e1,e2).¬p[e])


Proof




Definitions occuring in Statement :  es-first-since: e2 first e ≥ e1.P[e] alle-between1: e∈[e1,e2).P[e] es-loc: loc(e) es-E: E event_ordering: EO Id: Id uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s] not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a alle-between1: e∈[e1,e2).P[e] all: x:A. B[x] implies:  Q not: ¬A false: False so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] wellfounded: WellFnd{i}(A;x,y.R[x; y]) guard: {T} es-first-since: e2 first e ≥ e1.P[e] cand: c∧ B

Latex:
\mforall{}[es:EO].  \mforall{}[e1:E].  \mforall{}[e2:\{e:E|  loc(e)  =  loc(e1)\}  ].  \mforall{}[p:\{e:E|  loc(e)  =  loc(e1)\}    {}\mrightarrow{}  \mBbbP{}].
    uiff(\mforall{}e\mmember{}[e1,e2).\mneg{}e  =  first  e  \mgeq{}  e1.p[e];\mforall{}e\mmember{}[e1,e2).\mneg{}p[e])



Date html generated: 2016_05_16-AM-09_54_35
Last ObjectModification: 2015_12_28-PM-09_32_20

Theory : new!event-ordering


Home Index