Nuprl Lemma : alle-le-iff
∀es:EO. ∀e':E. ∀[P:{e:E| loc(e) = loc(e') ∈ Id} ⟶ ℙ]. (∀e≤e'.P[e]
⇐⇒ P[e'] ∧ ∀e<e'.P[e])
Proof
Definitions occuring in Statement :
alle-le: ∀e≤e'.P[e]
,
alle-lt: ∀e<e'.P[e]
,
es-loc: loc(e)
,
es-E: E
,
event_ordering: EO
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
alle-lt: ∀e<e'.P[e]
,
alle-le: ∀e≤e'.P[e]
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
guard: {T}
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
es-locl: (e <loc e')
,
es-le: e ≤loc e'
,
or: P ∨ Q
Latex:
\mforall{}es:EO. \mforall{}e':E. \mforall{}[P:\{e:E| loc(e) = loc(e')\} {}\mrightarrow{} \mBbbP{}]. (\mforall{}e\mleq{}e'.P[e] \mLeftarrow{}{}\mRightarrow{} P[e'] \mwedge{} \mforall{}e<e'.P[e])
Date html generated:
2016_05_16-AM-09_42_52
Last ObjectModification:
2015_12_28-PM-09_42_14
Theory : new!event-ordering
Home
Index