Nuprl Lemma : alle-lt-iff

es:EO. ∀e':E.
  ∀[P:{e:E| loc(e) loc(e') ∈ Id}  ⟶ ℙ]. (∀e<e'.P[e] ⇐⇒ P[pred(e')] ∧ ∀e<pred(e').P[e] supposing ¬↑first(e'))


Proof




Definitions occuring in Statement :  alle-lt: e<e'.P[e] es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  alle-lt: e<e'.P[e] all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uimplies: supposing a member: t ∈ T not: ¬A false: False prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] es-locl: (e <loc e') subtype_rel: A ⊆B rev_implies:  Q es-E: E es-base-E: es-base-E(es) or: P ∨ Q

Latex:
\mforall{}es:EO.  \mforall{}e':E.
    \mforall{}[P:\{e:E|  loc(e)  =  loc(e')\}    {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}e<e'.P[e]  \mLeftarrow{}{}\mRightarrow{}  P[pred(e')]  \mwedge{}  \mforall{}e<pred(e').P[e]  supposing  \mneg{}\muparrow{}first(e'))



Date html generated: 2016_05_16-AM-09_42_15
Last ObjectModification: 2015_12_28-PM-09_41_39

Theory : new!event-ordering


Home Index